资源类型

期刊论文 778

会议视频 47

会议专题 1

年份

2024 2

2023 153

2022 119

2021 93

2020 47

2019 53

2018 39

2017 33

2016 36

2015 31

2014 20

2013 14

2012 28

2011 35

2010 44

2009 17

2008 13

2007 13

2006 4

2004 1

展开 ︾

关键词

碳中和 25

能源 14

海上风电场 7

二氧化碳 6

低碳经济 6

环境 6

可持续发展 5

海上风电 5

低碳发展 4

低碳 3

天然气 3

电力系统 3

CCS 2

CO2封存 2

中国 2

中国近海 2

产业结构 2

光催化 2

制氢 2

展开 ︾

检索范围:

排序: 展示方式:

Frontier science and challenges on offshore carbon storage

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1680-6

摘要:

● The main direct seal up carbon options and challenges are reviewed.

关键词: Offshore carbon storage     Direct CO2 injection     CO2-CH4 replacement     CO2-EOR     CCS hubs     CO2 transport    

离岸碳捕集利用与封存技术体系研究

李姜辉,李鹏春,李彦尊,童峰

《中国工程科学》 2023年 第25卷 第2期   页码 173-186 doi: 10.15302/J-SSCAE-2023.07.015

摘要:

离岸碳捕集、利用与封存(CCUS)技术是沿海国家或地区通过工程方式为实现CO2减排而发展起来的解决方案与技术体系;相对于陆上CCUS技术,具有潜在封存空间广阔、封存安全等诸多优势。离岸CCUS技术指从沿海大型或近海碳排放源捕集CO2,加压并运输至离岸封存平台后注入海底地质储层中,实现CO2与大气永久隔离或利用其生产价值产品的过程。本文概要回顾了全球及我国离岸CCUS技术的发展需求与产业现状,分析了发展离岸CCUS的技术性和社会性价值;梳理总结了代表性的离岸CCUS技术发展路线及其态势,如CO2工厂捕集、CO2管道运输、CO2海底咸水层封存与驱油利用、CO2化学利用以及其他技术架构。着眼不同技术创新方向面临的共性问题,提出我国离岸CCUS领域未来发展建议:注重陆海统筹战略规划和布局,培养高水平研究团队,加强各发展阶段的基础研究、核心技术研发、成本控制、规模增扩和政策激励等。

关键词: 离岸碳捕集、利用与封存;CO2捕集;CO2运输;CO2封存;CO2利用;沿海地区;近海沉积盆地    

China’s policy framework for carbon capture, utilization and storage: Review, analysis, and outlook

《能源前沿(英文)》 2023年 第17卷 第3期   页码 400-411 doi: 10.1007/s11708-023-0862-z

摘要: Carbon capture, utilization, and storage (CCUS) is estimated to contribute substantial CO2 emission reduction to carbon neutrality in China. There is yet a large gap between such enormous demand and the current capacity, and thus a sound enabling environment with sufficient policy support is imperative for CCUS development. This study reviewed 59 CCUS-related policy documents issued by the Chinese government as of July 2022, and found that a supporting policy framework for CCUS is taking embryonic form in China. More than ten departments of the central government have involved CCUS in their policies, of which the State Council, the National Development and Reform Commission (NDRC), the Ministry of Science and Technology (MOST), and the Ministry of Ecological Environment (MEE) have given the greatest attention with different focuses. Specific policy terms are further analyzed following the method of content analysis and categorized into supply-, environment- and demand-type policies. The results indicate that supply-type policies are unbalanced in policy objectives, as policy terms on technology research and demonstration greatly outnumber those on other objectives, and the attention to weak links and industrial sectors is far from sufficient. Environment-type policies, especially legislations, standards, and incentives, are inadequate in pertinence and operability. Demand-type policies are absent in the current policy system but is essential to drive the demand for the CCUS technology in domestic and foreign markets. To meet the reduction demand of China’s carbon neutral goal, policies need to be tailored according to needs of each specific technology and implemented in an orderly manner with well-balanced use on multiple objectives.

关键词: carbon capture     utilization     and storage (CCUS)     policy     content analysis     China    

Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 412-427 doi: 10.1007/s11708-023-0879-3

摘要: The coal-to-liquid coupled with carbon capture, utilization, and storage technology has the potential to reduce CO2 emissions, but its carbon footprint and cost assessment are still insufficient. In this paper, coal mining to oil production is taken as a life cycle to evaluate the carbon footprint and levelized costs of direct-coal-to-liquid and indirect-coal-to-liquid coupled with the carbon capture utilization and storage technology under three scenarios: non capture, process capture, process and public capture throughout the life cycle. The results show that, first, the coupling carbon capture utilization and storage technology can reduce CO2 footprint by 28%–57% from 5.91 t CO2/t·oil of direct-coal-to-liquid and 24%–49% from 7.10 t CO2/t·oil of indirect-coal-to-liquid. Next, the levelized cost of direct-coal-to-liquid is 648–1027 $/t of oil, whereas that of indirect-coal-to-liquid is 653–1065 $/t of oil. When coupled with the carbon capture utilization and storage technology, the levelized cost of direct-coal-to-liquid is 285–1364 $/t of oil, compared to 1101–9793 $/t of oil for indirect-coal-to-liquid. Finally, sensitivity analysis shows that CO2 transportation distance has the greatest impact on carbon footprint, while coal price and initial investment cost significantly affect the levelized cost of coal-to-liquid.

关键词: coal-to-liquid     carbon capture     utilization and storage (CCUS)     carbon footprint     levelized cost of liquid     lifecycle assessment    

The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic

Andrew LOCKLEY, Ted von HIPPEL

《工程管理前沿(英文)》 2021年 第8卷 第3期   页码 456-464 doi: 10.1007/s42524-020-0102-8

摘要: Liquid Air Energy Storage (LAES) is at pilot scale. Air cooling and liquefaction stores energy; reheating revaporises the air at pressure, powering a turbine or engine (Ameel et al., 2013). Liquefaction requires water & CO removal, preventing ice fouling. This paper proposes subsequent geological storage of this CO – offering a novel Carbon Dioxide Removal (CDR) by-product, for the energy storage industry. It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach. Similarly, established Compressed Air Energy Storage (CAES) uses air compression and subsequent expansion. CAES could also add CO scrubbing and subsequent storage, at extra cost. CAES stores fewer joules per kilogram of air than LAES – potentially scrubbing more CO per joule stored. Operational LAES/CAES technologies cannot offer full-scale CDR this century (Stocker et al., 2014), yet they could offer around 4% of projected CO disposals for LAES and<25% for current-technology CAES. LAES CDR could reach trillion-dollar scale this century (20 billion USD/year, to first order). A larger, less certain commercial CDR opportunity exists for modified conventional CAES, due to additional equipment requirements. CDR may be commercially critical for LAES/CAES usage growth, and the necessary infrastructure may influence plant scaling and placement. A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century (ignoring siting constraints) – but this must be costed against competing CDR and energy storage technologies.

关键词: carbon dioxide removal     Liquid Air Energy Storage     Compressed Air Energy Storage     geoengineering    

Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Dawid P. Hanak, Vasilije Manovic

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 453-459 doi: 10.1007/s11705-019-1892-2

摘要: Renewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.

关键词: carbon capture     energy storage     renewable energy sources     decarbonisation     fossil fuels    

An adaptive policy-based framework for China’s Carbon Capture and Storage development

Xiaoliang YANG, Wolfgang HEIDUG, Douglas COOKE

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 78-86 doi: 10.1007/s42524-019-0003-x

摘要:

China’s political leadership has taken an increasingly public and proactive stance on climate change since 2014. This stance includes making a commitment that Chinese carbon dioxide (CO2) emissions will peak around 2030 and enacting measures through the 13th Five-Year Plan to support energy efficiency, clean energy technology, and carbon management. Chinese policymakers consider carbon capture and storage (CCS) a critical bridging technology to help accelerate the decarbonization of its economy. This paper reviews and analyzes Chinese CCS support policies from the perspective of an adaptive policymaking framework, recognizing uncertainty as an inherent element of the policymaking process and drawing general lessons for responding to changing circumstances. Notably, the political support for CCS in China remains fragmented with uncoordinated government leadership, undecided industry players, and even with opposing voices from some leading scientists. There is scope for expanding the framework to provide more granularity, in particular relating to the development of a CCS infrastructure and the development of storage-focused CO2-EOR. Overall, given the role CCS can play to decarbonize China’s power and other industrial sectors, a commitment to CCS from top policymakers and major stakeholders is needed.

关键词: CCS     policy     climate change     China    

CCS,CCUS,CCRS,CMC系统集成

金涌,朱兵,胡山鹰,洪丽云

《中国工程科学》 2010年 第12卷 第8期   页码 49-55

摘要:

二氧化碳捕集—封存、生产生活中的节能减排和可再生能源的开发是实施低碳经济的三个核心举措。近年来提出的碳捕集—利用—封存和碳捕集—再利用—封存是更为积极的CO2减排应对策略。人类在未来必须要把宝贵的碳元素同时作为资源和能源载体循环利用,进行全程管理。

关键词: 低碳经济     碳捕集—封存     碳捕集—利用—封存     碳捕集—再利用—封存     碳的全程管理    

我国草地的固碳功能

高树琴,赵霞,方精云

《中国工程科学》 2016年 第18卷 第1期   页码 73-79 doi: 10.15302/J-SSCAE-2016.01.010

摘要:

本文通过综述当前我国草地碳库的研究成果,并利用1982—2011年的遥感影像,估算出我国草地生态系统碳库约为31.2 PgC,其中96 %储存于土壤中。由于我国草地类型多样,分布地域广阔,造成草地植被碳密度分布的空间异质性很高。内蒙古是草地植被碳库最大的省份,其次是西藏和青海,六大牧区的植被碳库占全国草地植被碳库总量的71 %。然而,我国90 %的天然草地发生不同程度的退化,采取有效的人工管理措施和实施重大的生态建设工程,均对草地碳库的恢复具有明显的作用,说明我国草地有很大的碳汇潜力。

关键词: 草地     植被碳储量     土壤碳储量     草地退化     固碳潜力    

二氧化碳捕集、利用与封存技术 Perspectives

林青阳, 张霄, 王涛, 郑成航, 高翔

《工程(英文)》 2022年 第14卷 第7期   页码 27-32 doi: 10.1016/j.eng.2021.12.013

摘要:

人类活动造成的二氧化碳(CO2 )排放是引起全球变暖和气候变化的主要原因之一。绝大部分二氧化碳 的排放来源于化石燃料燃烧,以及钢铁和水泥生产等工业过程。二氧化碳的排放会导致气候变化,而二 氧化碳捕集、利用与封存(CCUS)是一种可持续性技术,在减排方面具有前景。从这个角度而言,二氧化 碳捕集着重于化学吸收技术,主要原因在于其商业化潜力。本文对各种化学溶剂吸收二氧化碳的能力和 速率进行了总结。二氧化碳的利用重点在于电化学转化途径,即将二氧化碳转化为具有潜在价值的化学 品,这一途径已经备受关注。通过不同二氧化碳减排产品的法拉第转换效率,可对效率的改善情况进行 说明。为了成功应用二氧化碳封存技术,需要更好地了解流体力学、地质力学以及反应运移,本文将详细讨论这几点。

关键词: 二氧化碳捕集、利用与封存     二氧化碳捕集     二氧化碳利用     二氧化碳封存     化学吸收     电化学转化     封存机制    

Achievements, challenges and global implications of China’s carbon neutral pledge

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1532-9

摘要: China has been committed to achieving carbon neutrality by 2060. China’s pledge of carbon neutrality will play an essential role in galvanising global climate action, which has been largely deferred by the Covid-19 pandemic. China’s carbon neutrality could reduce global warming by approximately 0.2–0.3 °C and save around 1.8 million people from premature death due to air pollution. Along with domestic benefits, China’s pledge of carbon neutrality is a “game-changer” for global climate action and can inspire other large carbon emitters to contribute actively to mitigate carbon emissions, particularly countries along the Belt and Road Initiative (BRI) routes. In order to achieve carbon neutrality by 2060, it is necessary to decarbonise all sectors in China, including energy, industry, transportation, construction, and agriculture. However, this transition will be very challenging, because major technological breakthroughs and large-scale investments are required. Strong policies and implementation plans are essential, including sustainable demand, decarbonizing electricity, electrification, fuel switching, and negative emissions. In particular, if China can peak carbon emissions earlier, it can lower the costs of the carbon neutral transition and make it easier to do so over a longer time horizon. China’s pledge of carbon neutrality by 2060 and recent pledges at the 26th UN Climate Change Conference of the Parties (COP26) are significant contributions and critical steps for global climate action. However, countries worldwide need to achieve carbon neutrality to keep the global temperature from growing beyond the level that will cause catastrophic damages globally.

关键词: Carbon neutrality     Carbon peak     Renewable energy     Negative emission     Carbon capture     Utilisation and storage     Nature-based solution    

我国碳捕集利用与封存技术发展研究

张贤,李阳,马乔,刘玲娜

《中国工程科学》 2021年 第23卷 第6期   页码 70-80 doi: 10.15302/J-SSCAE-2021.06.004

摘要:

碳捕集利用与封存( CCUS)是实现碳中和目标不可或缺的重要技术选择。为了系统梳理技术发展现状、明确未来发展方向,本文对我国 CCUS 技术水平、示范进展、成本效益、潜力需求等进行了全面评估。我国 CCUS 技术发展迅速,与国际整体发展水平相当,目前处于工业化示范阶段,但部分关键技术落后于国际先进水平。在工业示范方面,我国具备了大规模捕集利用与封存的工程能力,但在项目规模、技术集成、海底封存、工业应用等方面与国际先进水平还存在差距。在减排潜力与需求方面,我国理论封存容量和行业减排需求极大,考虑源汇匹配之后不同地区陆上封存潜力差异较大。在成本效益方面,尽管当前 CCUS 技术成本较高,但未来可有效降低实现碳中和目标的整体减排成本。为此建议,加快构建 CCUS 技术体系,推进全链条集成示范,加快管网布局和基础设施建设,完善财税激励政策和法律法规体系。

关键词: 碳中和,CCUS,技术研发与示范,减排潜力,成本与效益    

不同坡向人工林红松木材碳素储存量的分形研究

秦磊,郭明辉

《中国工程科学》 2014年 第16卷 第4期   页码 34-39

摘要:

本文以东北林业大学老山生态站阳坡和阴坡的人工林红松为研究对象,基于分形理论,从非线性角度出发,对红松木材碳素储存量进行分形分析,研究其规律性变化,旨在明确不同地理位置间木材碳素储存能力的差异。研究结果表明,老山生态站阳坡和阴坡红松木材碳素储存量的径向变异趋势相近;阴坡的碳素储存能力高于阳坡;阴坡红松幼龄材和成熟材碳素储存量的分形维数平均值明显高于阳坡,其碳素储存量的梯度分布较阳坡更复杂,且木材碳素储存效果明显优于阳坡。这为选择有利于提高木材碳素储存效果的人工林红松立地条件提供了理论依据。

关键词: 木材     人工林红松     碳素储存量     坡向     分形    

Numerical simulation and analysis of periodically oscillating pressure characteristics of inviscid flow in a rolling pipe

Yan GU, Yonglin JU

《能源前沿(英文)》 2012年 第6卷 第1期   页码 21-28 doi: 10.1007/s11708-012-0173-2

摘要: Floating liquefied natural gas (LNG) plants are gaining increasing attention in offshore energy exploitation. The effects of the periodically oscillatory motion on the fluid flow in all processes on the offshore plant are very complicated and require detailed thermodynamic and hydrodynamic analyses. In this paper, numerical simulations are conducted by computational fluid dynamics (CFD) code combined with user defined function (UDF) in order to understand the periodically oscillating pressure characteristics of inviscid flow in the rolling pipe. The computational model of the circular pipe flow is established with the excitated rolling motion, at the excitated frequencies of 1–4 rad/s, and the excitated amplitudes of 3°–15°, respectively. The influences of flow velocities and excitated conditions on pressure characteristics, including mean pressure, frequency and amplitude are systematically investigated. It is found that the pressure fluctuation of the inviscid flow remains almost constant at different flow velocities. The amplitude of the pressure fluctuation increases with the increasing of the excitated amplitude, and decreases with the increasing of the excitated frequency. It is also found that the period of the pressure fluctuation varies with the excitated frequency. Furthermore, theoretical analyses of the flow in the rolling circular pipe are conducted and the results are found in qualitative agreement with the numerical simulations.

关键词: pressure fluctuation     rolling     floating production storage and offloading unit for liquefied natural gas (LNG-FPSO) offshore    

Synergistic utilization of coal and other energy – Key to low carbon economy

Weidou NI, Zhen CHEN

《能源前沿(英文)》 2011年 第5卷 第1期   页码 1-19 doi: 10.1007/s11708-010-0136-4

摘要: In China, coal is a dominant component of energy mix, and it is expected to remain as such over the next 30 to 40 years. Coal is expected to be used even more in power generation. The direct combustion of coal already has been causing severe pollution and ecological degradation, and it is quite difficult to address the need to reduce greenhouse gas (GHG) given the direct combustion of coal. Therefore, the polygeneration system based on coal gasification, which is one of the major examples of synergistic utilization of coal, is proposed. It is a comprehensive solution to meet the energy challenges China is facing. Furthermore, the synergy of fossil fuels (especially coal) with renewable energy, the synergy of different kinds of energy for energy storage, the synergy of centralized and distributed supply of different kinds of energy, and the synergy of different kinds of energy in smart energy grid (power, gas, heat, and water) are the keys to making China a low-carbon economy. Carbon dioxide (CO ) mitigation in China should begin from the coal-chemical industry given their accumulated relevant experiences. The mitigation process should gradually be transformed into the “IGCC+ polygeneration+ CCUS”. The objectives of this paper are to describe the synergistic utilization of coal, and to analyze the synergy of coal with other energy resources, and to propose the scientific and technological problems to achieve these synergies.

关键词: synergy     clean and efficient utilization of coal     coal-based polygenration     CO2 mitigation     energy storage    

标题 作者 时间 类型 操作

Frontier science and challenges on offshore carbon storage

期刊论文

离岸碳捕集利用与封存技术体系研究

李姜辉,李鹏春,李彦尊,童峰

期刊论文

China’s policy framework for carbon capture, utilization and storage: Review, analysis, and outlook

期刊论文

Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage

期刊论文

The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic

Andrew LOCKLEY, Ted von HIPPEL

期刊论文

Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Dawid P. Hanak, Vasilije Manovic

期刊论文

An adaptive policy-based framework for China’s Carbon Capture and Storage development

Xiaoliang YANG, Wolfgang HEIDUG, Douglas COOKE

期刊论文

CCS,CCUS,CCRS,CMC系统集成

金涌,朱兵,胡山鹰,洪丽云

期刊论文

我国草地的固碳功能

高树琴,赵霞,方精云

期刊论文

二氧化碳捕集、利用与封存技术

林青阳, 张霄, 王涛, 郑成航, 高翔

期刊论文

Achievements, challenges and global implications of China’s carbon neutral pledge

期刊论文

我国碳捕集利用与封存技术发展研究

张贤,李阳,马乔,刘玲娜

期刊论文

不同坡向人工林红松木材碳素储存量的分形研究

秦磊,郭明辉

期刊论文

Numerical simulation and analysis of periodically oscillating pressure characteristics of inviscid flow in a rolling pipe

Yan GU, Yonglin JU

期刊论文

Synergistic utilization of coal and other energy – Key to low carbon economy

Weidou NI, Zhen CHEN

期刊论文